## ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Tech. (NANO SCIENCES AND TECHNOLOGY) COURSE CODE: 305

| Register Number: |  |  |
|------------------|--|--|
|                  |  |  |

Signature of the Invigilator (with date)

COURSE CODE: 305

Time: 2 Hours

Max: 400 Marks

## Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

| 1.  | Wh                                                                                 | ich molecule has                | the la                                           | rgest dipole              | momer  | nt?  |                         |                    |                               |  |  |  |
|-----|------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|---------------------------|--------|------|-------------------------|--------------------|-------------------------------|--|--|--|
|     | (A)                                                                                | HCl                             | (B)                                              | $H_2$                     | . (    | C)   | HF                      | (D)                | HI                            |  |  |  |
| 2.  | Buf                                                                                | fer solution can l              | oe prej                                          | pared by mix              | ing eq | ual  | ratio of                |                    |                               |  |  |  |
|     | (A)                                                                                | CH <sub>3</sub> COONa +         | HCl                                              | T. 172                    | (      | B)   | CH <sub>3</sub> COONa + | CH <sub>3</sub> C( | ООН                           |  |  |  |
|     | (C)                                                                                | CH₃COOH + N                     | IaOH                                             | E 12 E                    | (      | D)   | NaCl + H <sub>2</sub> O |                    |                               |  |  |  |
| 3.  | Wh                                                                                 | ich of the followi              | ng is a                                          | soft base?                |        |      |                         |                    |                               |  |  |  |
|     | (A)                                                                                | CH <sub>3</sub> COO-            | (B)                                              | Н-                        | (      | C)   | NO <sub>3</sub> -       | (D)                | CO <sub>3</sub> <sup>2-</sup> |  |  |  |
| 4.  | On                                                                                 | dissolving NaCl                 | lissolving NaCl in water, the pH of the solution |                           |        |      |                         |                    |                               |  |  |  |
|     | (A)                                                                                | Increases                       |                                                  |                           | (      | B)   | Decreases               |                    |                               |  |  |  |
|     | (C)                                                                                | Remaining und                   | hange                                            | ed                        | (      | D)   | May increases           | or dec             | reases                        |  |  |  |
| 5.  | Nuc                                                                                | eleophiles are                  |                                                  | -                         |        |      |                         |                    |                               |  |  |  |
|     | (A)                                                                                | Lewis acid                      |                                                  |                           | (      | B)   | Lewis bases             |                    |                               |  |  |  |
|     | (C)                                                                                | Bronsted acid                   |                                                  |                           | (      | D)   | None                    |                    |                               |  |  |  |
| 6.  | Which of the following molecules will not show IR spectrum?                        |                                 |                                                  |                           |        |      |                         |                    |                               |  |  |  |
|     | (A)                                                                                | $H_2$                           | (B)                                              | HCl                       | (      | C).  | CH <sub>4</sub>         | (D)                | $H_2O$                        |  |  |  |
| 7.  | Blu                                                                                | e metal is a mixt               | ure of                                           |                           |        |      |                         |                    |                               |  |  |  |
|     | (A)                                                                                | Cu <sub>2</sub> S and FeS       | (B)                                              | Cu and Ni                 | (      | C)   | Cu and Zn               | (D)                | Zn and ZnO                    |  |  |  |
| 8.  | Which one of the following represents a set of electrophiles?                      |                                 |                                                  |                           |        |      |                         |                    |                               |  |  |  |
|     | (A)                                                                                | Br+ and CCl2                    | (B)                                              | AlCl <sub>3</sub> and C   | Cl- (  | C)   | H+ and H <sub>2</sub> O | (D)                | CN- and NH                    |  |  |  |
| 9.  | In the $S_N^2$ reaction mechanism which one of the following is the most reactive? |                                 |                                                  |                           |        |      |                         |                    |                               |  |  |  |
|     | (A)                                                                                | $C_6H_6$                        | (B)                                              | $\mathrm{CH}_3\mathrm{X}$ | (      | C)   | $C_2H_5X$               | (D)                | $R_2CHX$                      |  |  |  |
| 10. | Whi                                                                                | ich of the followi              | ng doe                                           | s not assume              | a line | ars  | structure?              |                    |                               |  |  |  |
|     | (A)                                                                                | $SnCl_2$                        | (B)                                              | NCO-                      | (      | C)   | $CS_2$                  | (D)                | $NO_2^+$                      |  |  |  |
| 11. | Din                                                                                | erisation of cycl               | openta                                           | ıdiene is an e            | xampl  | e of | a                       |                    |                               |  |  |  |
|     | (A)                                                                                | Friedel-Crafts                  | reaction                                         | on                        | (      | B)   | Chain reaction          |                    |                               |  |  |  |
|     | (C)                                                                                | (C) Condensation polymerization |                                                  |                           |        |      | Diels Alder rea         | ction              |                               |  |  |  |

| 12. | Whi  | ich of the following reacts fastest with            | OH-?                 |                                         |
|-----|------|-----------------------------------------------------|----------------------|-----------------------------------------|
|     | (A)  | Benzamide                                           | (B)                  | Benzoyl chloride                        |
|     | (C)  | Ethyl benzoate                                      | (D)                  | Sodium benzoate                         |
| 13. | Isob | outyric acid                                        |                      |                                         |
|     | (A)  | Butanoic acid                                       | (B)                  | 2-methyl propanic acid                  |
|     | (C)  | 2-methyl propionic acid                             | (D)                  | Valeric acid                            |
| 14. | A pr | rocess is spontaneous at all temperatu              | ire whe              | n                                       |
|     | (A)  | $\Delta H > 0$ and $\Delta S \square 0$             | (B)                  | $\Delta H \square 0$ and $\Delta S > 0$ |
|     | (C)  | $\Delta H = 0$ and $\Delta S = 0$                   | (D)                  | $\Delta H \square 0$ and $\Delta S = 0$ |
| 15. | Whi  | ch of the following has the highest lat             | tice en              | ergy?                                   |
|     | (A)  | KF (B) CsF                                          | (C)                  | NaF (D) RbF                             |
| 16. | An e | example of colligative property is                  |                      |                                         |
|     | (A)  | Boiling point                                       | (B)                  | Freezing point                          |
|     | (C)  | Osmotic pressure                                    | (D)                  | Vapour pressure                         |
| 17. | Mole | ecule NH <sub>3</sub> has the symmetry point gro    | oup of               |                                         |
|     | (A)  | $D_4v \hspace{1cm} (B) \hspace{0.5cm} T_{\text{d}}$ | (C)                  | C <sub>3</sub> v (D) C <sub>3</sub> h   |
| 18. | The  | Strength of an acid depends on its                  |                      |                                         |
|     | (A)  | Acidity                                             | (B)                  | Basicity                                |
|     | (C)  | Degree of dissociation                              | (D)                  | Molecular weight                        |
| 19. | High | her ionization potential in a period is             | shown                | by                                      |
|     | (A)  | Nobel gases                                         | (B)                  | Alkali metals                           |
|     | (C)  | Halogens                                            | (D)                  | Alkaline earth metals                   |
| 20. | Leas | st acidic in the series BF3, BCl3 and B             | Br <sub>3</sub> , is | BF₃ because                             |
|     | (A)  | F - is most electronegative                         |                      |                                         |
|     | (B)  | F - has a small size                                |                      | # 1 0° 1° 40                            |
|     | (C)  | B³+ has a very small size                           |                      |                                         |
|     | (D)  | Back donation of electrons from F to                | В                    |                                         |

| 21. | Iodine                                                | e is an example    | of      | E                  |          |                            |           |                  |  |
|-----|-------------------------------------------------------|--------------------|---------|--------------------|----------|----------------------------|-----------|------------------|--|
|     | (A)                                                   | Ionic crystal      |         |                    | (B)      | Covalent crys              | tal       |                  |  |
|     | (C)                                                   | Molecular cryst    | als     |                    | (D)      | Metallic cryst             | al        |                  |  |
| 22. | Which                                                 | h of the followin  | g alk   | aline earth met    | al ion l | has highest ion            | ic mobil  | ity in aqueous   |  |
|     | (A)                                                   | $\mathrm{Be^{2+}}$ | (B)     | $\mathrm{Mg^{2+}}$ | (C)      | Ba <sup>2+</sup>           | (D)       | Ca <sup>2+</sup> |  |
| 23. | The o                                                 | xidation numbe     | r of P  | hosphorous in I    | Pyroph   | osphorous acid             | is        |                  |  |
|     | (A)                                                   | +1                 | (B)     | +4                 | (C)      | +5                         | (D)       | +3               |  |
| 24. | Condition for spontaneous change of a given system is |                    |         |                    |          |                            |           |                  |  |
|     | (A)                                                   | dS is positive     |         |                    | (B)      | dS is negative             | 9         |                  |  |
|     | (C)                                                   | dSE,v is positive  |         |                    | (D)      | dS <sub>E,v</sub> is negat | ive       |                  |  |
| 25. | Whic                                                  | h of the followin  | g is r  | not a Lewis acid   | ?        |                            |           |                  |  |
|     | (A)                                                   | AlCl <sub>3</sub>  | (B)     | $\mathrm{SbF}_{5}$ | (C)      | $SO_2$                     | (D)       | CN-              |  |
| 26. | Whic                                                  | h of the followin  | g is t  | he most acidic i   | n wate   | er?                        |           |                  |  |
|     | (A)                                                   | CH <sub>4</sub>    | (B)     | NH <sub>3</sub>    | (C)      | $H_2O$                     | (D)       | HF               |  |
| 27. | Whic                                                  | h of the followir  | ng is a | a hard acid?       |          |                            |           |                  |  |
|     | (A)                                                   | Li+                | (B)     | Cu <sup>+</sup>    | (C)      | Ag+                        | (D)       | Au+              |  |
| 28. | Whic                                                  | ch one of the foll | owing   | g gas is extreme   | ly solu  | ble in water?              |           |                  |  |
|     | (A)                                                   | Carbon dioxide     |         |                    | (B)      | Ammonia                    |           |                  |  |
|     | (C)                                                   | Chlorine           |         |                    | (D)      | Hydrogen Su                | lphide    |                  |  |
| 29. | Hydr                                                  | rogen atom cont    | ains )  | orotons, electron  | ns and   | neutron respec             | tively as | 3                |  |
|     | (A)                                                   | 1,0,1              | (B)     | 1,1,0              | (C)      | 1,1,1                      | (D)       | 0,1,0            |  |
| 30. | Pyre                                                  | ne is the comme    | ercial  | name for           |          |                            |           |                  |  |
|     | (A)                                                   | Chloroform         |         |                    | (B)      | Carbon tetra               | chloride  | )                |  |
|     | (C)                                                   | Methylene Chl      | oride   |                    | (D)      | Calcium oxy                | chloride  |                  |  |
| 31. | Mar                                                   | ble is             |         |                    |          |                            |           |                  |  |
|     | (A)                                                   | Calcium carbo      | nate    |                    | (B)      | Sodium carb                | onate     |                  |  |
|     | (C)                                                   | Magnesium su       | lphat   | e                  | (D)      | Ferric chlori              | de        |                  |  |

| 32. | Whi                                      | ich of the followi                                          | ng is b | acking s                    | oda?     |              |                                              |          |                           |       |
|-----|------------------------------------------|-------------------------------------------------------------|---------|-----------------------------|----------|--------------|----------------------------------------------|----------|---------------------------|-------|
|     | (A)                                      | Na <sub>2</sub> CO <sub>3</sub> · 10H <sub>2</sub>          | O       |                             |          | (B)          | NaHCO <sub>3</sub>                           |          |                           |       |
|     | (C)                                      | $Na_2CO_3 \cdot H_2O$                                       |         |                             |          | (D)          | NH <sub>4</sub> Cl                           |          |                           |       |
| 33. | The                                      | formula alumin                                              | ium ca  | arbide is                   |          |              |                                              |          |                           |       |
|     | (A)                                      | Al <sub>2</sub> C <sub>3</sub>                              | (B)     | $\mathrm{Al}_3\mathrm{C}_4$ |          | (C)          | Al <sub>4</sub> C <sub>3</sub>               | (D)      | $AlC_2$                   |       |
| 34. | is th                                    | Earth satellite of<br>ne Earth's radiu<br>th, then the velo | s and   | g is the                    | accelei  | ation        | due to gravity                               |          |                           |       |
|     | (A)                                      | $\frac{gR^2}{R+h}$                                          | (B)     | $\sqrt{\frac{gR}{R+h}}$     | ī.       | (C)          | $\frac{gR}{R+h}$                             | (D)      | $\sqrt{\frac{gR^2}{R+h}}$ |       |
| 35. | Den                                      | sity of water is                                            |         |                             |          |              |                                              |          |                           |       |
|     | (A)                                      | 1 g/cm <sup>3</sup>                                         | (B)     | 10 g/cm                     | 13       | (C)          | 100 g/cm <sup>3</sup>                        | (D)      | 1000 g/cm <sup>3</sup>    | 3     |
| 36. | Whi                                      | ch of the following                                         | ng qua  | lity of lig                 | ght will | not va       | ary with respec                              | t to med | dium?                     |       |
|     | (A)                                      | Velocity                                                    | (B)     | Amplit                      | ude      | (C)          | Frequency                                    | (D)      | Intensity                 | 7     |
| 37. | Force constant of a spring is defined by |                                                             |         |                             |          |              |                                              |          |                           |       |
|     | (A)                                      | $\sqrt{m/k}$                                                | (B)     | $\sqrt{mk}$                 |          | (C)          | $\sqrt{k/m}$                                 | (D)      | $\sqrt{k^2 m}$            |       |
| 38. | Fine                                     | the value of th                                             | e norn  | nalizatio                   | n consta | ant A,       | of the a partic                              | le movi  | ng in a 1-I               | ) box |
|     | of di                                    | imension 0 to 'a'                                           | and it  | s wave fi                   | unction  | is $\psi$ (x | $x) = A \sin\left(\frac{n  \pi x}{a}\right)$ |          |                           |       |
|     | (A)                                      | $\sqrt{\frac{2}{a}}$                                        | (B)     | $\sqrt{\frac{a}{2}}$        |          | (C)          | $\sqrt{\frac{1}{2a}}$                        | (D)      | $\sqrt{2a}$               |       |
| 39. | The                                      | equation $\nabla^2 \rho =$                                  | 0, is c | alled as                    |          |              |                                              |          |                           |       |
|     | (A)                                      | Laplace equati                                              | on      |                             |          | (B)          | Poisson's equ                                | ation    |                           |       |
|     | (C)                                      | Pascal's law                                                |         |                             |          | (D)          | Boyles law                                   |          |                           |       |
| 40. | Mag                                      | netic induction i                                           | in a so | lenoid is                   | proport  | ional        | to                                           |          |                           |       |
|     | (A)                                      | number of turn                                              | ıs      |                             |          | (B)          | current                                      |          |                           |       |
|     | (C)                                      | diameter                                                    |         |                             |          | (D)          | (A) and (B)                                  |          |                           |       |
| 41. | Whe                                      | en Ar gas is disch                                          | narged  | l it produ                  | ices the | follow       | ring color?                                  |          |                           |       |
|     | (A)                                      | Red                                                         | (B)     | Blue                        |          | (C)          | Green                                        | (D)      | Yellow                    |       |
|     |                                          |                                                             |         |                             |          |              |                                              |          |                           |       |

| 42. | Which one of the following is not a Maxwell's equation? |                                                  |                                   |            |                                              |                         |        |  |
|-----|---------------------------------------------------------|--------------------------------------------------|-----------------------------------|------------|----------------------------------------------|-------------------------|--------|--|
|     | (A)                                                     | $\nabla \cdot E = \frac{1}{\varepsilon_0}  \rho$ |                                   | (B)        | $\nabla \cdot B = 0$                         |                         |        |  |
|     | (C)                                                     | $\nabla^2 \; \rho = 0$                           |                                   | (D)        | $\nabla \times E = -\partial B / \partial B$ | $\partial t$            |        |  |
| 43. | Mag                                                     | gnetic field is indu                             | ced by                            |            |                                              |                         |        |  |
|     | (A)                                                     | Constant electric                                | c field                           | (B)        | Changing ele                                 | ectric field            |        |  |
|     | (C)                                                     | Static charge                                    |                                   | (D)        | None                                         |                         |        |  |
| 44. | Dipo                                                    | ole moment of two                                | equal and opposit                 | e charge:  | s (q) separated                              | d by a distance d,      | is     |  |
|     |                                                         |                                                  | (B) q+d                           | (C)        |                                              | (Ď) q/d                 |        |  |
| 45. | Elec                                                    | etric field by an inf                            | inite plane carries               | a unifor   | m surface cha                                | $rge \sigma is$         |        |  |
|     |                                                         |                                                  | (B) $2\sigma/\varepsilon_0$       |            |                                              |                         |        |  |
| 46. |                                                         | electrical dipole is<br>le will experience       | placed at an angl                 | e of 30°   | to a non-unifo                               | rm electrical field     | l. The |  |
|     | (A)                                                     | A torque only                                    |                                   |            |                                              |                         |        |  |
|     | (B)                                                     | A translational f                                | orce only in the di               | rection of | f the field                                  |                         |        |  |
|     | (C)                                                     | A translational f                                | orce only in a direc              | ction nor  | mal to the dir                               | ection of the field     |        |  |
|     | (D)                                                     | A torque as well                                 | as translational fo               | orce       |                                              |                         |        |  |
| 47. | Amo                                                     | orphous materials                                | are                               |            |                                              |                         |        |  |
|     | (A)                                                     | Having no regula                                 |                                   |            |                                              |                         |        |  |
|     | (B)                                                     | Having regular a                                 | array of atoms                    |            |                                              |                         |        |  |
|     | (C)                                                     | Showing Bragg's                                  | diffraction                       |            |                                              |                         |        |  |
|     | (D)                                                     | Similar to crysta                                | lline structure                   |            |                                              |                         |        |  |
| 48. | Tota                                                    | al number of Brava                               | ais lattices is                   |            |                                              |                         |        |  |
|     | (A)                                                     | 7                                                | (B) 8                             | (C)        | 14                                           | (D) 32                  |        |  |
| 49. | Tota                                                    | al number of atoms                               | s belongs to the BO               | CC struct  | ture is                                      |                         |        |  |
|     | (A)                                                     | 1                                                | (B) 2                             | (C)        | 3                                            | (D) 4                   |        |  |
| 50. |                                                         | acitance of a paral<br>th area of cross se       | lel plate capacitor<br>ction A is | whose e    | lectrodes are s                              | separated by a dis      | tance  |  |
|     |                                                         |                                                  |                                   | (C)        | $\varepsilon_0 Ad$                           | (D) $A/\varepsilon_0 d$ |        |  |
| 305 |                                                         |                                                  | 6                                 |            |                                              |                         |        |  |

| 51. | Algebraic sum of cu                | rrents i <sub>1</sub> , and i <sub>2</sub> at th | ne junctio | n is              |                      |    |
|-----|------------------------------------|--------------------------------------------------|------------|-------------------|----------------------|----|
|     | (A) i <sub>1</sub> +i <sub>2</sub> | (B) i <sub>1</sub> -i <sub>2</sub>               | (C)        | $i_1 \cdot i_2$   | (D) 0                |    |
| 52. | Net charge of the n                | type semiconductor                               | is         |                   |                      |    |
|     | (A) 0                              |                                                  | (B)        | Positive          |                      |    |
|     | (C) Negative                       |                                                  | (D)        | Cannot be de      | etermined            |    |
| 53. | Fermi level, E <sub>F</sub> of a   | n intrinsic semicond                             | uctor lies |                   |                      |    |
|     | (A) Close to the va                | alence band                                      | (B)        | Close to the      | conduction band      |    |
|     | (C) Middle of the                  | band gap                                         | (D)        | None of the a     | ibove                |    |
| 54. | Velocity of Cerenko                | v radiation in a give                            | n mediun   | n is (c is the ve | elocity of light)    |    |
|     | (A) Equal to c                     |                                                  | (B)        | Less than c       |                      |    |
|     | (C) Greater than                   |                                                  | (D)        | Zero              |                      |    |
| 55. | Brewster's angle is                | an angle at which                                |            |                   |                      |    |
|     | (A) Diffraction occ                | curs                                             | (B)        | Interference      | occurs               |    |
|     | (C) Refraction occ                 | urs                                              | (D)        | Total interna     | al reflection occurs |    |
| 56. |                                    | ves with the velocity<br>same direction. Wha     |            |                   |                      |    |
|     | (A) $v_1 + v_2$                    | (B) v <sub>1-</sub> v <sub>2</sub>               | (C)        | $v_1/v_2$         | (D) $v_1 \cdot v_2$  |    |
| 57. | A jet is said to be su             | personic jet when it                             | travels v  | with a velocity   |                      |    |
|     | (A) Equal to the v                 | elocity of light                                 | (B)        | Greater than      | the velocity of ligh | t  |
|     | (C) Equal to the v                 | elocity of sound                                 | (D)        | Greater than      | the velocity of sour | nd |
| 58. | At NTP, the pressur                | re is                                            |            |                   |                      |    |
|     | (A) .1 mbar                        | (B) 1 bar                                        | (C)        | I Torr            | (D) 1 m Torr         |    |
| 59. | Nuclear fission read               | tion is assisted by                              |            |                   |                      |    |
|     | (A) Neutron                        | (B) Electron                                     | (C)        | Proton            | (D) Photon           |    |

| 60. | The  | Balmer series occurs when an electron          | relax  | es from any higher state to               |
|-----|------|------------------------------------------------|--------|-------------------------------------------|
|     | (A)  | State with n = 1                               | (B)    | State with $n = 2$                        |
|     | (C)  | State with $n = 3$                             | (D)    | State with n = 4                          |
| 61. | The  | energy eigen values, $E_n = n^2 h^2 / (8ma^2)$ | , corr | esponds to                                |
|     | (A)  | Hydrogen atom                                  | (B)    | Harmonic oscillator                       |
|     | (C)  | Particle in a box                              | (D)    | Deuterium                                 |
| 62. | Dim  | ension of entropy is                           |        |                                           |
|     | (A)  | K                                              | (B)    | K-1                                       |
|     | (C)  | $ m JK^{-1}$                                   | (D)    | Dimensionless                             |
| 63. | Boyl | les law states                                 |        |                                           |
|     | (A)  | $(P \propto 1/V)_T$ (B) $(P \propto V)_T$      | (C)    | $(P \propto 1/T)_v$ (D) $(P \propto T)_v$ |
| 64. | Com  | bination of thermodynamics first and s         | econd  | l laws states that                        |
|     | (A)  | dS = TdU - PdV                                 | (B)    | dU = TdS - PdV                            |
|     | (C)  | dS = TdV - PdS                                 | (D)    | dV = TdS - PdU                            |
| 65. | In a | n ideal gas, the molecules are                 |        |                                           |
|     | (A)  | Interacting electrically                       | (B)    | Interacting magnetically                  |
|     | (C)  | Idle                                           | (D)    | Non-interacting                           |
| 66. | The  | strongest force is                             |        |                                           |
|     | (A)  | Gravitational force                            | (B)    | Electromagnetic force                     |
|     | (C)  | Nuclear force                                  | (D)    | None                                      |
| 67. | Ant  | iparticle of electron is                       |        |                                           |
|     | (A)  | Positron (B) Proton                            | (C)    | Neutron (D) Photon                        |
| 68. | Ma   | gnitude of a vector, 3i + 4j + 2k is           |        |                                           |
|     | (A)  | 9 (B) √29                                      | (C)    | 29 (D) √9                                 |

| 69. | If $a = (3, 4, 0)$ and $b$               | =(0,2,               | -3), then $b$                 | - a  is equ  | ıal to                     |            |                               |     |
|-----|------------------------------------------|----------------------|-------------------------------|--------------|----------------------------|------------|-------------------------------|-----|
|     | (A) 0                                    | (B)                  | 2                             | (C)          | 3                          | (D)        | -3                            |     |
| 70. | Which vector is pe<br>Q (-1, 3,4), and R | erpendi<br>(3, 0, 6) | cular to the                  | plane cor    | ntaining the th            | ree poi    | nts P (2, 1, 5                | i), |
|     | (A) $2i - j + k$                         | (B)                  | i + 2j + 2k                   | (C)          | 2i + 2j –k                 | (D)        | i + 2j + k                    |     |
| 71. | A vector is said to s                    | aid to               | be normalize                  | ed, then its | norm is                    | 6.0        |                               |     |
|     | (A) 0                                    | (B)                  | 1                             | (C)          | 00                         | (D)        | - ∞                           |     |
| 72. | If $\nabla \times A = 0$ , then A        | is                   |                               |              |                            |            |                               |     |
|     | (A) Unit vector                          | (B)                  | Solenoidal                    | (C)          | Irrotational               | (D)        | Planar                        |     |
| 73. | $e^{i\theta}$ is defined by Eu           | ler the              | orem as                       |              |                            |            |                               |     |
|     | (A) $\cos \theta + i \sin \theta$        | (B)                  | $\cos \theta - i \sin \theta$ | θ (C)        | $\sin\theta + i\cos\theta$ | (D)        | $\sin \theta - i \cos \theta$ |     |
| 74. | Z = a + ib, then $1/2$                   | Z=?                  |                               |              |                            |            |                               |     |
|     | (A) a – ib                               |                      |                               | (B)          | $(a - ib)/(a^2 + b^2)$     | )          |                               |     |
|     | (C) $(a + ib)/(a^2 + b)$                 | 2)                   |                               | (D)          | (a + ib) <sup>2</sup>      |            |                               |     |
| 75. | If $Z1$ and $Z2$ are c                   | omplex               | numbers th                    | nen   Z1 Z2  | is                         |            |                               |     |
|     | (A) $ Z1  +  Z2 $                        | (B)                  | Z1  -  Z2                     | (C)          | $ Z1  \cdot  Z2 $          | (D)        | Z1 / Z2                       |     |
| 76. | Modulus of $Z = (1 -$                    | i)/(1 +              | <i>i</i> ) is,                |              |                            |            |                               |     |
|     | (A) i                                    | (B)                  | 1                             | (C) -        | i                          | (D)        | -1                            |     |
| 77. | Which of the followi                     | ng is n              | ot correct for                | r the comp   | lex numbers $Z$ 1          | $Z_{2}$ as | nd Z3?                        |     |
|     | (A) $Z1 + Z2 = Z2$                       | + Z1                 |                               | (B)          | Z1 + (Z2 + Z3)             | =(Z1 +     | - Z2)+ Z3                     |     |
|     | (C) $Z + Z^{-1} = 0$                     |                      |                               | (D)          | $ZZ^{-1}=1$                |            |                               |     |
| 78. | The kronecker delta                      | , $\delta_{ij}$ is   | equal to the                  | following    | value when $i =$           | j          |                               |     |
|     | (A) 0                                    | (B)                  | 1                             | (C)          | ~                          | (D)        | 1                             |     |

- For the beta function  $\beta(m,n)$  is

  - (A)  $\beta(m) + \beta(n)$  (B)  $\beta(m) \beta(n)$  (C)  $\beta(n, m)$
- (D)  $\beta(m,n)^2$

- Gamma function  $\Gamma(n)$  is defined for n > 0 as

- (A)  $\int_{0}^{\infty} e^{-x} x^{n+1} dx$  (B)  $\int_{0}^{\infty} e^{-x} x^{n-1} dx$  (C)  $\int_{0}^{\infty} e^{x} x^{n-1} dx$  (D)  $\int_{0}^{\infty} e^{-x} x^{2n-1} dx$
- Laplace transform of eat is
  - (A) 1/(s-a)
- (B) 1/(s + a)
- (C) 1/(s<sup>2</sup>+1)
- None

- 82.  $\int \frac{\ln(\ln x)}{x \ln x} dx$  is equal to
  - (A)  $\left[\ln\left(\ln x\right)^2\right] + C$

 $\frac{1}{2}\ln(\ln x) + C$ 

(C)  $\frac{1}{2} (\ln (\ln x))^2 + C$ 

(D) None

83. What is the angle <ACB?</p>



- (A) 30
- (B) 45
- (C)
- 90 (D)
- Distance between the two points A (1,2,3) and B (1, 2, 4)
  - (A) 1

(B)

- (C) 3
- (D) 4

- Projection of i + 2j + 3k on i 2j 2k is
  - (A) 3

- (C) 9

- If  $\cos A = \frac{3}{4}$ , then what is 32  $\sin (A/2) \sin (5A/2)$ ?

- (D) 15

- 87.  $\cos(180 \theta) =$ 
  - (A)  $-\sin\theta$  (B)  $\sin\theta$
- (C)  $-\cos\theta$  (D)  $\cos\theta$
- If  $\cos A + \cos B = 0 = \sin A + \sin B$ , then  $\cos 2A + \cos 2B = is$ 88.
  - (A)  $-2 \sin (A + B)$  (C)  $2 \sin (A + B)$  (B)  $-2 \cos (A + B)$  (D)  $2 \cos (A + B)$

- Integrating factor of differential equation,  $\cos x \frac{dy}{dx} + y \sin x = 1$  is
  - (A)  $\cos x$
- (B)  $\tan x$  (C)  $\sin x$
- (D) sec x
- 90. Solution of the differential equation  $\frac{d^2y}{dx^2} \frac{dy}{dx} + 6y = 0$  is

  - (A)  $Ae^{3x} + Be^{2x}$  (B)  $Ae^{-3x} + Be^{-2x}$  (C)  $Ae^{-3x} + Be^{2x}$  (D)  $Ae^{3x} + Be^{-2x}$

- 91.  $\int_{-\pi/2}^{\pi/2} \sin x \, dx = ?$
- (B)  $\frac{\sqrt{3}}{4}$
- (C) -1/2
- (D) 0

- If a matrix is Hermitian, its eigen values are
  - (A) 0
- (B) Real
- (C) Complex
- (D) None

- (all all all) The minor element of a21 of  $A = \begin{vmatrix} a21 & a22 & a23 \end{vmatrix}$  is (a31 a32 a32)

- (A)  $\begin{vmatrix} a11 & a12 \\ a21 & a22 \end{vmatrix}$  (B)  $\begin{vmatrix} a21 & a22 \\ a31 & a32 \end{vmatrix}$  (C)  $\begin{vmatrix} a22 & a23 \\ a32 & a33 \end{vmatrix}$  (D)  $\begin{vmatrix} a12 & a13 \\ a32 & a33 \end{vmatrix}$
- 94. If  $\begin{vmatrix} A & B & C \\ D & E & F \\ G & H & I \end{vmatrix} = K$ , then  $\begin{vmatrix} A & C & B \\ D & F & E \\ G & I & H \end{vmatrix}$  is
  - (A) K<sup>2</sup>
- (B) K
- (C) -K
- (D) -K<sup>2</sup>

- 95. If  $(\nabla \phi) = 0$ , then  $\phi$  is

  - (A) Solenoidal (B) Irrotational (C) Constant
- (D) None

- For the matrices A and B,  $(AB)^T = ?$ 
  - (A) A<sup>T</sup>B<sup>T</sup>
- (B) B<sup>T</sup>A<sup>T</sup>
- (C) (AB)-1
- (D) A<sup>-1</sup>B<sup>-1</sup>

- 97. Multiplicative inverse of a matrix  $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ 
  - (A)  $\begin{pmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{pmatrix}$
- (B)  $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ 
  - (C)  $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$
- (D)  $\begin{pmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$
- 98. Equation of ellipse is

- (A)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  (B)  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  (C)  $y^2 = 4ax$  (D)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$
- Slope of a line passing parallel to y axis is 99.
  - (A) 0
- . (B) ∞
- (C) 1 (D) None



This graph is defined by the following function

- (A)  $\sin x$
- (B) cos x
- (C)  $\sin x/x$  (D)  $\cos x \sin x$